G Chem Prepared LGCESC/AABD/AABDC Song, Byeongmin Approved LGCESC/AABD/AABDC Park, Minsoo

PRODUCT SPECIFICATION CONFIDENTIAL

Date 2015-10-07

<u>Rev</u> 1

Description Rechargeable Lithium Ion Battery LQ1729-A2

PRODUCT SPECIFICATION

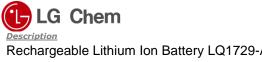
Rechargeable Lithium Ion Battery Model : LQ1729-A2

Prepared	Reviewed	Approved
Song, Byeongmin		Park, Minsoo
Date : '14.12.11	Date :	Date : '14.12.12

20 YOIDO-DONG YOUNGDUNGPO-GU, SEOUL 150-721, KOREA TEL : (82) 2-3773-1114 FAX : (82) 2-3773-7005

http://www.lgchem.com

<u>Date</u> <u>Rev</u> 2015-10-07 1


Revision History

Revision	Date	Originator	Description
0	2014-12-11	Song, Byeongmin	Original Release
1	2015-10-07	Lee, Hyunseok	Revised

Date Rev 2015-10-07 1

Contents

Revision History
Contents
1. General Information
1.1 Scope
1.2 Application
1.3 Product Classification
1.4 Model Name
2. Specification
2.1 Nominal Specification
2.1.1 Capacity
2.1.2 Nominal Voltage
2.1.3 Voltage
2.1.4 Thickness
2.1.5 Standard Charge
2.1.6 Standard Discharge
2.1.7 Weight
2.2 Recommended Charge Specification
2.2.1 Normal Charge
2.2.2 Semi-fast Charge
2.2.3 Fast charge
2.2.4 Charge at Low Temperatures
2.3 Operating Temperature Specification
2.3.1 Continuous operation
2.3.2 Excursion
2.4 Protection limit specification
2.4.1 1 st Over voltage limit
2.4.2 2 nd Over voltage limit
2.4.3 Under voltage limit
3. Appearance and Dimension
3.1 Appearance
3.2 Dimension
4. Performance Specification
4.1 Standard Test Condition

CONFIDENTIAL

<u>Rev</u>

nargeable Lithium Ion Battery LQ1729-A2	2015-10-07	1
4.0 Electrical On a rification		
4.2 Electrical Specification		
4.3 Power Limit Specification		
4.4 Durability Specification		
4.5 Safety Specification		
5. Cautions and Prohibitions in Handling		14
6. Dimensional Drawing		16
Appendix		17

Date <u>Rev</u> 2015-10-07 1

1. General Information

1.1 Scope

This product specification defines the performances of the rechargeable lithium ion battery to be supplied to the Customer by LG Chem.

1.2 Application: Electric vehicle

1.3 Product classification: Rechargeable lithium ion battery

LQ1729-A2 1.4 Model name:

2. Specification

2.1 Nominal Specification

Item	Condition / Note	Specification
2.1.1 Capacity*	Std. charge / discharge	Nominal 41.4 Ah (C _{nom})
		Minimum 41.0 Ah (C _{min})
2.1.2 Nominal Voltage		3.73 V
2.1.3 Voltage*		3.695 ~ 3.735 V
2.1.4 Thickness*		11.3 mm (± 0.23 mm)
2.1.5 Standard Charge	Constant current	41.0 A
(Refer to 4.1.1)	Constant voltage	4.15 V
	End condition (Cut off)	2.05 A
	Temperature	25±2 ℃
2.1.6 Standard Discharge	Constant current	41.0 A
(Refer to 4.1.2)	End voltage (Cut off)	3.0 V
	Temperature	25 ± 2 ℃
2.1.7 Weight*		966 g (± 12 g)

* measured at the End-of-Line test

<u>Date</u> <u>Rev</u> 2015-10-07 1

2.2 Recommended Charge Specification

Item	Condition / Note	Specification
2.2.1 Normal charge	Constant current	12.0 A
	Constant voltage	4.126 V*
	End condition (Cut off)	2.05 A
	Temperature	10 ~ 45 ℃
2.2.2 Semi-fast Charge	Constant current	41.0 A
	Constant voltage	4.126 V*
	End condition (Cut off)	2.05 A
	Temperature	20 ~ 40 °C
2.2.3 Fast charge	Constant power**	Max. 224 W
(less than 10% usage over	End condition (Cut off)**	Cutoff voltage / power :
lifetime)		4.09 V / 6.25 W
	Temperature	25 ~ 35 ℃
2.2.4 Charge	Constant power**	Max. 37W at 0 °C
at low temperatures		Max. 20W at -10 °C
		Max. 7W at -20 °C
	End condition (Cut off)***	Cutoff voltage / power :
		4.0V / 6.25W at 0 ℃
		4.0V / 3.16W at -10 ℃
		4.0V / 3.16W at -20 ℃
	Temperature	-20 ~ 0 °C

^{*} This cutoff voltage shall be adjusted considering power requirements and SOC accuracy (ref. 3%). ** Constant power: Power for charge is defined within maximum power and may consist of several power values in series, where power diminish one after another, for instance, by 20% until it reaches the end condition *** End condition: The cell voltage shall not go above the cutoff voltage and the charge ends when the power reaches the cutoff power

<u>Date</u> <u>Rev</u> 2015-10-07 1

2.3 Operating Temperature Specification

Item	Condition / Note	Specification
2.3.1 continuous operation	Continuous operation is a condition where the	
	battery will experience on a frequent basis and	10 ~ 45 ℃
	maintain its designed performance.	
2.3.2 excursion	Excursion is a condition where the battery may	
	experience on an infrequent basis and be used	-30 ~ 10℃, 45 ~ 55℃
	with reduced performance.	

2.4 Protection limit specification

Item	Condition / Note	Specification
2.4.1 1 st over voltage limit	The battery may experience this voltage on an infrequent basis. When the battery's voltage reaches this limit, the charging power shall be reduced to zero.	4.3V
2.4.2 2 nd over voltage limit The battery shall not be used over this limit		4.45V
2.4.3 under voltage limit	The battery shall not be used below this limit	2.0V

3. Appearance and Dimension

3.1 Appearance

There shall be no such defects as deep scratch, crack, rust, discoloration or leakage, which may adversely affect the commercial value of the cell.

3.2 Dimension

Thickness	: Shipping thickness Nom. 11.3 mm (when measured under weight of 30 kgf for 2 s	sec)
-----------	---	------

Width : Nom. 159 mm

Height : Nom. 290.5 mm (without terminals)

Thickness increase after 20% degradation of the initial capacity : \leq 7% of initial thickness

4. Performance Specification

4.1 Standard test condition

4.1.1 1C charge

Unless otherwise specified, "1C charge" shall consist of charging at constant current of 41.0 A.

The cell shall then be charged at constant voltage of 4.15 V while the charging current is tapering to 2.05 A. For test purposes, charging shall be performed at 25 °C \pm 2 °C.

4.1.2 1C discharge

"1C Discharge" shall consist of discharging at a constant current of 41.0 A to 3.0 V. Discharging shall be performed at 25 °C \pm 2 °C unless otherwise noted (such as capacity versus temperature).

4.1.3 1C charge / 1C discharge cycle

Cells shall be charged at constant current of 41.0 A to 4.15 V with end current of 2.05 A. Cells shall be discharged at constant current of 41.0 A to 3.0 V. Cells shall be left for 20 minutes after both charge and discharge.

	Condi	tion		Specif	ication	
4.2.1	Cells shall be charged per 4.1.1 and discharged		≥ 41	.0 Ah (C _m	_{in})	
Initial Capacity*	per 4.1.2 within 1h after fu	ull charge.				
4.2.2	Cells shall be charged pe	er 4.1.1 at 25 ℃ ± 2 ℃				
Temperature	and discharged per 4.	1.2 at the following				
Dependency of	temperatures.					
Capacity*	Charge	Discharge		Capacity		
		-20 °C		70 % of C_{min}		
	25 °0	0 °C		90 % of C_{min}		
	25 ℃	25 °C		100 % of C_{min}		
		45 ℃	100 % of C _{min}			
4.2.3	Cells shall be charg	ed per 4.1.1, and	SOC	OCV	SOC	OCV
OCV Table*	discharged 5 % of the cap	pacity measured as per	(%)	(∨)	(%)	(V)
	4.2.2 at constant curr	ent of 4.1 Ah. The	100	4.135	45	3.836
	discharge repeats 20 tim	es. Cells take a pause	95	4,091	40	3.807
	for 60 minutes after	every charge and	90	4.067	35	3.767
	discharge. OCV shall be	e recorded after every	85	4.050	30	3.713

4.2 Electrical Specification

CONFIDENTIAL

<u>Date</u> <u>Rev</u> 2015-10-07 1

	pause.	80	4.035	25	3.657
		75	4.011	20	3.603
		70	3.983	15	3.549
		65	3.954	10	3.522
		60	3.905	5	3.433
		55	3.879	0	3.168
		50	3.858		
4.2.4	Cells shall be set at a SOC as per 4.2.4 and	SOC	Test	Resi	stance
Discharge Resistance	discharged at as high current as 3.0 V is not	(%)	Current**	(r	nΩ)
at R.T.*	breached within 30 seconds. If there is a value			10s	30s
	of current beyond which the system is not	100	200A	1.39	1.79
	available, the current is defined as test current.	95	200A	1.38	1.76
	Resistance is calculated by dividing the	90	200A	1.37	1.74
	difference between OCV and the voltage at the	80	200A	1.39	1.78
	end of discharge by the test current.	70	200A	1.39	1.77
		60	200A	1.32	1.68
		50	200A	1.36	1.77
		40	200A	1.42	1.90
		30	200A	1.48	1.97
		20	200A	1.52	1.99
		10	150A	1.70	2.64
		5	80A	2.28	3.68
		0	20A	3.15	5.45

^{*} Determined using Begin-of-Life batteries (within 3 months from the production date) ** Test current: 200A is taken as a maximum value by a battery system

<u>Date</u> 2015-10-07 <u>Rev</u> 1

Item	Condition	Specif	fication		
4.2.5	Cells shall be set at a SOC as per 4.2.4 and	SOC	Test	Resistance	
Charge Resistance	charged at as high current as 4.2 V is not	(%)	Current**	(m	ıΩ)
at R.T.*	breached within 30 seconds. If there is a value			10s	30s
	of current beyond which the system is not	100	30A	1.63	2.20
	available, the current is defined as test current.	95	50A	1.40	1.82
	Resistance is calculated by dividing the	90	75A	1.33	1.72
	difference between OCV and the voltage at the	80	100A	1.32	1.68
	end of discharge by the test current.	70	130A	1.31	1.67
		60	180A	1.34	1.73
		50	200A	1.30	1.65
		40	200A	1.36	1.71
		30	200A	1.41	1.80
		20	200A	1.48	1.94
		10	200A	1.49	1.89
		5	200A	1.77	2.17
		0	200A	2.32	3.24

* Determined using Begin-of-Life batteries (within 3 months from the production date) ** Test current: 200A is taken as a maximum value by a battery system

Date Rev 2015-10-07 1

4.3 Power Limit Specification

Item	Condition	Specification
4.3.1 Discharge power	10s. discharge power for the voltage limits defined below $3.0V @ \ge 10^{\circ}C$ $2.8V @ -20~10^{\circ}C$ $2.5V @ \le -20^{\circ}C$	500 450 400 350 250 250 250 250 150 0 0 10 20 0 10 20 0 10 20 10 20 10 20 10 20 10 20 10 20 10 20 20 10 20 20 20 20 20 20 20 20 20 2
4.3.2 Charge power (for an on-board charger)	30s. charge power (when charged using an on-board charger) for the voltage limit of 4.15V	250
4,3.3 Regen power	10s. regen power for the voltage limit of 4.15V	250 200 200 200 100 100 100 100 10

<u>Date</u> <u>Re</u> 2015-10-07 1

4.4 Durability specification.

Item	Condition	Specification
4.4.1	Cells at the shipping state shall be stored in a	Capacity recovery rate \geq
Self Discharge Rate	temperature-controlled environment at 45 °C for	98 % of C _{min}
	1 month. After storage, cells shall be discharged	
	per 4.1.2 and cycled per 4.1.1 and 4.1.2 for 3	
	cycles to obtain recovered capacity*	
4.4.2	Cells shall be charged per 4.1.1 and stored in a	Capacity recovery rate \geq
Storage	temperature-controlled environment at 55 / 45	84 % of C _{min} (55 °C),
at High Temperature	°C for 4 weeks. After storage, cells shall be	92 % of C _{min} (45 °C)
	discharged per 4.1.2 and cycled per 4.1.1 and	
	4.1.2 for 3 cycles to obtain recovered capacity.*	
4.4.3	Cells shall be charged and discharged per	\geq 86 % of 1st cycle's
Cycle Life at R.T	4.1.3, 1000 cycles at 25 °C \pm 2 °C. The last	capacity
	discharge capacity is to be compared to the first	(at 25 °C. 1000 cycles)
	in percentage.	
4.4.4	Cells shall be charged and discharged per	\geq 87 % of 1st cycle's
Cycle Life	4.1.3, 300 cycles at 45 °C \pm 2 °C. The last	capacity
at High Temperature	discharge capacity is to be compared to the first	(at 45 °C. 300 cycles)
	in percentage.	

^{*} Recovered capacity: After storage, the cells shall be discharged with 1C discharge condition(4.1.2), 1C charge and 1C discharge cycle shall be repeated (4.1.3) three times to have the third discharge capacity as recovered capacity.

Date 2015-10-07

<u>Rev</u> 1

4.5 Safety Specification

Item	Condition	Specification
4.5.1	Cells charged per 4.1.1 shall be subjected to a half-sine	No leakage
Shock Test	shock of peak acceleration of 50 g_{n} and pulse duration	
	of 11 milliseconds. Cells are subjected to 6 shocks for	
	each of the three mutually perpendicular axes (x, y, z).	
	(UN Test)	
4.5.2	Cells charged per 4.1.1 shall be vibrated for 1 hour per	No leakage
Vibration Test	each of the three mutually perpendicular axes (x, y, z).	
	The vibration is a sinusoidal waveform with a logarithmic	
	sweep between 7 Hz and 200 Hz and back to 7 Hz	
	traversed in 15 minutes. (UN Test)	
4.5.3	The cell charged per 4.1.1 is to be placed on a flat	No explode, No fire
Impact Test	surface. Onto a 15.8 mm diameter bar placed across the	
	center of the sample, a 9.1 kg mass is to be dropped	
	from a height of 61 \pm 2.5 cm. (UN Test)	
4.5.4	Cells shall be charged as per 4.1.1, and the positive and	No explode, No fire
External Short	the negative terminal is connected with a total resistance	
Circuiting Test*	of less than 100 m Ω for 1 hour. (UN Test)	
4,5.5		No explode, No fire
Overdischarge	Cells charged per 4.1.1 shall be discharged at constant	
Test*	current of 41.0 A for 1.5 hours.	
4.5.6	The cell charged as per 4.1.1 shall be set between two	No explode, No fire
Heating Test*	aluminum plates (325 x 195 x 10 mm), the distance of	
	which is 14 mm from each other. The cell shall be	
	heated in a circulating air oven at a rate of 5 °C per	
	minute. The test shall be terminated when the	
	temperature of the cell reaches 150 °C.	

^{*} The cells to be constrained in between two solid flat plates (e.g. 10mm thick Al plate) for the test.

CONFIDENTIAL

<u>Date</u> 2015-10-07 <u>Rev</u>

1

Item	Condition	Specification
4.5.7	Cells charged per 4.1.1 are to be crushed against the	No explode, No fire
Crush Test	crushing apparatus (Freedom Car). At a displacement of	
	15 % of the cell's height which is held for 5 minutes, the	
	cell shall be crushed again until either the displacement	
	reaches 50 %, or the force does 1000 times the cell's	
	mass, and held for 5 minutes. The test shall be	
	performed with one of three axes (x, y, z) of each cell.	
4.5.8	Cells charged per 4.1.1 shall be penetrated at the center	No explode, No fire
Penetration*	by a steel pointed rod of 3mm diameter at speed of 8	
	cm/sec.	
4.5.9	Cells charged per 4.1.1 shall be overcharged at 1C-rate	No explode, No fire
Overcharge*	until SOC reaches 200% or cell voltage reaches 8.3V,	
	whichever comes first.	

^{*} The cells to be constrained in between two solid flat plates (e.g. 10mm thick AI plate) for the test.

CONFIDENTIAL

 Date
 Rev

 1729-A2
 2015-10-07
 1

5. Caution and Prohibition in Handling

Warning for using the lithium ion rechargeable battery. Mishandling of the battery may cause heat, fire and deterioration in performance. Be sure to observe the following.

Caution

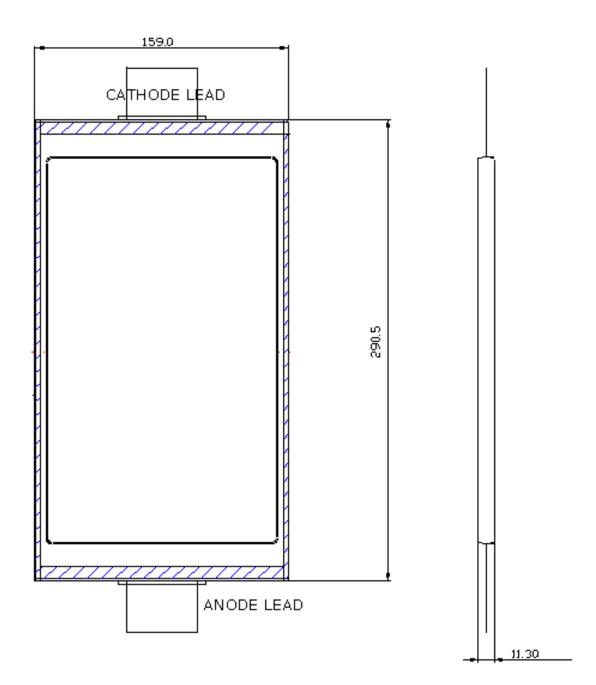
- When using the application equipped with the battery, refer to the user's manual before usage.
- Please read the specific charger manual before charging.
- When the cell is not charged after long exposure to the charger, discontinue charging
- Please check the positive(+) and negative(-) direction before packing.
- When a lead plate or wire is connected to the cell for packing, check out insulation not to short-circuit.
- Battery must be stored separately.
- Battery must be stored in a dry area with low temperature (≤25°C) for long-term storage.
- Do not place the battery in direct sunlight or heat.
- Do not use the battery in high static energy environment where the protection device can be damaged.
- When rust or smell is detected on first use, please return the product to the seller immediately.
- The battery must be away from children or pets
- When cell life span shortens after long usage, please exchange to new cells.
- Do not wear metallic objects (ex. ring, watch, accessory, etc.) while handling battery cells.
- When use cells for an assembly of module or pack, the "first-in, first-out" (FIFO) principle should be applied.
- Charge time should not be longer than specified in the manual.
- Do not expose the battery to the outside of the operating temperature range specified in this document.

Prohibitions

- Do not use different charger.
- Do not charge with more than maximum charge rate.
- Do not disassemble or reconstruct the battery.
- Do not throw or cause impact.
- Do not pierce a hole in the battery with sharp things. (such as nail, knife, pencil, drill)
- Do not use with other batteries or cells.
- Do not solder on battery directly.
- Do not press the battery with overload in manufacturing process.
- Do not use old and new cells together for packing.
- Do not expose the battery to high heat. (such as fire)

Date

<u>Rev</u> 2015-10-07 1


- ٠ Do not put the battery into a microwave or high pressure container.
- Do not use the battery reversed. •
- Do not connect positive(+) and negative(-) with conductive materials (such as metal, wire) •
- Do not allow the battery to be immerged in or wetted with water or sea-water. ٠
- Do not deform the battery cell (e.g. bending the terrace area or the pouch sealing area) without written agreement with the battery manufacturer.

 Date
 Rev

 2015-10-07
 1

6. Dimensional Drawing

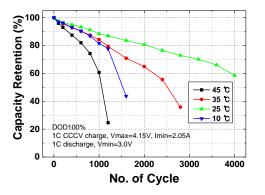
LQ1729-A2 Dimension

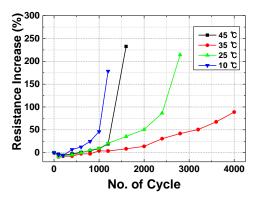
LG Chem Rechargeable Lithium Ion Battery LQ1729-A2

PRODUCT SPECIFICATION

CONFIDENTIAL

Date Rev 2015-10-07 1

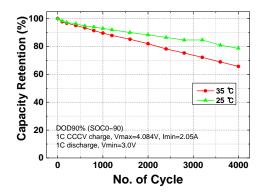

Appendix

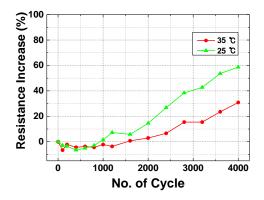

A.1 Cycle life at selected conditions

A.1.1 Cycle Life (DOD100%)

- Test condition

- Charge : 1C CCCV, Vmax=4.15V, Imin=2.05A
- Discharge : 1C, Vmin=3.0V
- SOC range : SOC 0~100%
- Rest time : 20 min after charge / discharge

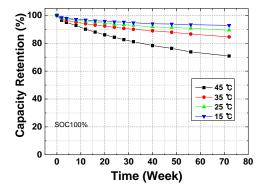


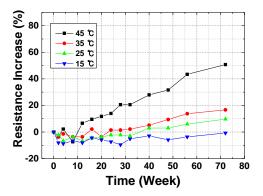


A.1.2 Cycle Life (DOD90%)

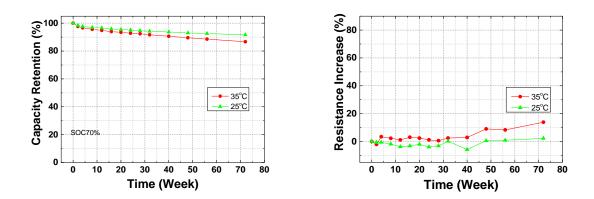
- Test condition

- Charge : 1C CCCV, Vmax=4.084V, Imin=2.05A
- Discharge : 1C, Vmin=3.0V
- SOC range : SOC0~90
- Rest time : 20 min after charge / discharge




CONFIDENTIAL		
	<u>Date</u>	Rev
	2015 10 07	1

2015-10-07 1


A.2 Storage life at selected conditions

A.2.1 Storage Life at SOC 100%

A.2.2 Storage Life at SOC 70%

A.3 Protocol for the capacity measurement at each check point

- Put the battery in a chamber of 25°C and wait for an hour.
- Discharge the cell with 1C discharge condition (4.1.2)
- Then repeat the 1C charge and 1C discharge cycle (4.1.3) for three times.
- Get the third discharge capacity as the capacity for each check point.

<u>Date</u> <u>Rev</u> 2015-10-07 1

A.4 Cell information for BMS & Pack design guide

A.4.1 Cell information for BMS design guide

Cell type : L3	Symbol	Value	comment	Refer to
2 nd over voltage	OV2	4.45 V	If the voltage of cell is over than OV2, the cell can be permanent damaged and not reversible. User never used cell over OV2.	"2.4.2 2 nd over voltage limit"
1 st over voltage ~ 2 nd over voltage			The margin to safety use cell.	
1 st over voltage	OV1	4.3	The threshold of OV1	
Max. operating voltage for regen. Pulse ~ 1 st over voltage		4.15 – 4.3 V	The power derating is applied in this range.	"2.4.1 1 st over voltage limit"
Max. operating voltage for regen. Pulse	Vmax_P	4.15 V	If the voltage of cell is over Vmax_P, the power derating should be started.	= Max. operating V + X [X = 0 for L3]
Max. operating voltage	Vmax_O	4.15 V	The threshold of Vmax_O	2.1.5 Standard Charge : Constant Voltage
Max. operating voltage ~ Min. operating voltage		4.15 – 2.5 V	The range of cell voltage to safety use.	
Min. operating voltage	Vmin_O	2.5 V	The threshold of Vmin_O	
Min. operating voltage ~ Under voltage limit		2 ~ 2/5V	The margin to safety use cell.	
Under voltage limit	UV	2.0 V	If the voltage of cell is under UV, the cell can be permanent damaged and not reversible. User never used cell under UV.	2.4.3 under voltage limit
Max Safety temp. °C	Tmax	55 °C	If the temperature of cell is over Tmax, the cell can be permanent damaged and not reversible. User never used cell over Tmax.	2.3.2 ; Max temperature
Max Safety temp. $^{\circ}$ C ~ Max operating temp. $^{\circ}$ C		55 - 45	The margin to safety use cell. The power derating should be applied.	
Max operating temp. $ {}^{\circ}\!$	Tmax_O	45 ℃	If the temperature of cell is over Tmax_O, the power derating should be started.	

CONFIDENTIAL

Date R 2015-10-07 1

<u>Rev</u> 1

Max operating temp. $^\circ\!\!\!C$ ~ Min operating temp. $^\circ\!\!\!C$		45 - 10	the range of cell temperature to safety use.(when charging)	
Min operating temp. \degree	Tmin_0	10 °C	If the temperature of cell is under Tmin_O, the charging power derating should be started.	
Min operating temp. ℃ ~ Min Safety temp. ℃		1030	The margin to safety use cell. The charging power derating should be applied.	
Min Safety temp. ℃	Tmin	-30 °C	If cell is used under Tmin, the cell can be permanent damaged and not reversible. User never used cell under Tmin.	
Max. operating current	Imax		It is decided by the required power and the structure of Pack. (ex. Busbar, current sensor, heat and so on) User never used cell over Imax.	
Max. operating current ~ Min. operating current		-	The range of cell current to safety use.	
Min. operating current	Imin		It is decided by the required power and the structure of Pack. (ex. Busbar, current sensor, heat and so on) User never used cell under Imin.	

A.4.2 Cell information for Pack design guide

Cell type : L3	Symbol	Value	comment	Refer to
Max. allowed pressure	Pmax	350 kPa		
Min. required pressure	Pmin	15 kPa		

A.4.3 Abbreviation

Acronym / Term	Full Form / Definition		
SOC	State of charge		
ѕон	State of health		
BMS	Battery Management System		
CAN	Controller Area Network		
DV	Design Validation		

Date

2015-10-07

<u>Rev</u> 1

Acronym / Term	Full Form / Definition
ну	High Voltage
v	Voltage
I	Current
MSD	Manual service disconnect
IATA – DGR	International Air Transport Association – Dangerous Goods Regulations
IMDG code	International Maritime Code for Dangerous Goods
ADR	The European Agreement concerning the International Carriage of Dangerous Goods by Road
TBD	To Be Determined
твс	To Be Confirmed
USOC	User State-Of-Charge
SCCR	Short Circuit Current Rating
APQP	Advanced Product Quality Planning
ASIC	Application Specification Integrated Circuit
ASIL	Automotive Safety Integration Level
ASPICE	Automotive Software Process Improvement & Capability Determination
BDU	Battery Disconnect Unit
BMS	Battery Management System
CAN	Controller Area Network
DIA	Development Interface Agreement
DPR	Design Prerequisites
DTC	Diagnostic Trouble Code
DV	Design Validation

Date

2015-10-07

<u>Rev</u> 1

Acronym / Term	Full Form / Definition
ЕМС	Electro-Magnetic Compatibility
FTA	Fault Tree Analysis
н	High Voltage
нw	Hardware
PHEV	Plug-in Hybrid Electric Vehicle
PV	Product Validation
зон	State-Of-Health
sw	Software
твр	To Be Determined
твс	To Be Confirmed
USOC	Usable State-Of-Charge
v	Voltage